Proceedings of the 1999 Particle Accelerator Conference, New Y ork, 1999

OBJECT ORIENTED C++ SOFTWARE COMPONENTS FOR
ACCELERATOR DESIGN *

D. L. Bruhwiler? J. R. Cary} and S. G. Shasharina, Tech-X Corporation, Boulder, CO

Abstract classes to support the same interface but fulfill requests

))])) differently at run time. This makextensibilitypossible
Object oriented programming techniques make it possi-5 ney class that implements a new algorithm can in-
ble for accelerator designers to independently devel@Rit from an existing class and be used in its place.

C++ software _components that can work together. As @), 1 is the best availab@OP language forcéentific ap-
example of this approach, we discuss some of the sqffications. The “expression template” technique [11-13]
ware components being developed at Tech-X Corporgnows C++ code to perform as well as optimized For-
tion, including: TxSTD, a library of standard utilities [1]; 977 in vector loop comparisons. Furthermore, the use
TxID, a library of data-holding and nonlinear dynamicg; "generic programming" and "template meta-program-
classes [2]; TXAC, an accelerator modeling class libragging" methods has yielded C++ linear algebra solvers
[3]; an X/Motif library used in the MAPA apipation [4] that are faster than Fortran77. [14] The base of numeri-
for interactive visualisation of dynamical systems sucky, jibraries for C++ is rapidly increasing, [15] and, be-
as particle accelerators; TxAN, a library of analysis and, ;se c++ is a superset of the well-established C lan-

simulation classes relevant to dynamical systems; aagage, it has access to a great wealth of legacy C code.
the LION++ nonlinear optimization library [5].

1 OBJECT-ORIENTED PROGRAMMING 2 " UTTING THE PIECES TOGETHER
Leo Michelotti developed the first C++ class library for

The computer software industry has been rapidly movingqe|ing beam dynamics in an accelerator [16] and de-
towards the use of object oriented programmi®®P) seryes credit for introducing the accelerator physics com-

[Ref.'s 6-10]. OOP provides a superior mechanism Q6 ity 1o the benefits of C++ and object oriented pro-

rapid development and testing, as well as ease of mai”&?émming. Other C++ codes are now under

nance and extensibility for large scientific codes. development, including MAD-9 [17], LEGO [18]
OOP consists of designirgasses, where a class is a foreanote+ and MAPA [4,19] Unfo’rtamely these

mat for holding and interacting with data. An object is @,4es are independently developed, and the C++

particular instance of a class, just as 3.1 is a particuldfaries used in one code cannot be used in the others.

insfcance of a real numb_er. Each object has its own dajge goal of the CASSIC project [20] was to standard-

while all objects of a given class share the same funGg he structure and interface of a C++ accelerator dy-
tions (called methods). A program is constructed by firgly mics Jibrary in order to promote the sharing and reuse
defining the_: classes. The program instar_1tiates Obje%_tﬁcode among the various developers. We propose an
corresponding to the classes and, by calling the publige naiive approach — the use of template based “traits”
methods of the_:se objects, manlpulates_‘. or dl_splays the chanisms [21-23] — to make C++ accelerator class
data. The public methods of a class define its interfac&;p 4 ries interoperable and, hence, true software compo-
The three defining properties OOP areencapsulation nents First, we briefly describe the class libraries under

inheritanceand polymorphism Encapsulationrefers to development at Tech-X Corporation, then we elaborate
the fact that objects are accessed only through a publi¢iher on the use of traits.

interface, while their internal data and implementations

remain hidden. Th|s_f_eatl_1re ensures that the code is ngeACCELERATOR DYNAMICS LIBRARY

from unwanted modifications.Inheritance allows the o

programmer to define new classes that inherit most dfe Tech-X accelerator dynamics library TxAC, now at

their coding from existing classes, only modifying othe first alpha release, has been used to successfully

adding data and methods as needed. This allows fopdel the Advanced Light Source, finding correct values

flexibility to increase the capability of an application irfor tunes and dynamic apertures. TxAC includes an SIF

ways not foreseen by the original programmers, witho@@rser (Standard Interchange Format, M#®D-8 input

rewriting the code. Polymorphism allows different language [24]) that can create an accelerator model
(beamlines, elements, and properties of the charged par-

* Work supported by Tech-X Corporation and by the U.S. Departme#icle) with full support for mathematical formulas.

of Energy, grant no. DE-FG03-96ER82292. TxAC comes with a number of built-in element types

Email: bruhwile@txcorp.com (e.g. quadrupoles, dipoles, thin RF cavities) which use

+ Also, University of Colorado Physics Department, Boulder, co @nalytical models for the electric and magnetic fields.
Each element type knows how to calculate the phase

0-7803-5573-3/99/$10.00@1999 | EEE. 369

Proceedings of the 1999 Particle Accelerator Conference, New Y ork, 1999

space map for particles passing through it, so the cod&ile any parameters relevant to the simulation are
can be used for tracking, and it allows the user to specHtiored in the TxDataSet class of TxID. The X/Motif
whether tracking should use 2, 4, or 6 dimensions. [19] GUI can extract data from these classes, thus allowing
TXAC also includes a beamline class, allowing the usére user interactive control over the simulation with im-
to define an arbitrarily deep hierarchy of beamlinesiediate rendering of the resulting data.

within beamlines -- critical for describing large rings,

which may consist of only a dozen or so unique elements 5 GRAPHICAL USER INTERFACE

that are repeated in various combinations for a total %e X/Motif GUI supports on-line tracking and renders

Qgggﬁs or thousands. - Synchrotron radiation effects o iting surface-of-sectio8@S) plots. litial con-

ditions for the next particle can be specified simply by

The TXAC class hierarchy is shown in Fig. 1. A neVtV:I'cking in the windows. ThesBOS plots can be riesd

element type can derive from the most appropriate par . : .
o . interactively, and the phase space variables can be paired
of this hierarchy and thus obtain most of the needed . .
. . up,in any order. Fixed points can also be found.
features. New features can then be added in the derived .
: : . The GUI also allows one to browse the local file system
C++ class, which must also provide the code that im- o . :
. or an appropriate input file, and then to save changes in
plements tracking through the element. Once a n ' : :
. . e same file or in a new file. The GUI can plot a sche-
element class has been defined, it need only be reqis- ..) ;
:) ' atic layout of the accelerator, warning the user if, for
tered with a name in the TxacElements file and, upaon

_— . ample, a ring does not close on itself.
recompilation, the new element type will be support he GUI provides appropriate windows for interactivel
by the parser and the graphical user interface (GUI). P bprop y

changing any relevant parameters for the accelerator, for
individual elements or for the analyses. For each type of
analysis, the GUI provides a menu item allowing the
user to activate the simulation, and then renders line
plots of the resulting data. Developers can define new
element classes or analysis classes through inheritance,
and these new types will be directly supported by the
GUI after compiling the new classes and relinking the

GUI

application.
Elemen SimpElemimg
++
Drift ‘ThinEIementHSteppablé‘ Beamlinq ‘FIatEIement‘ 6 LION OPTIMIZATION LIBRARY
E?S";';‘g?am il LION++ [5] is a suite of flexible and extensible C++
“C”g'vt;gme Quadrupole, | TxacElements software components for numerical computing. Still be-
'I\<Aick_etr ThkMultipole ing actively developed, the present release features
onitor

TxOptSlv, a library for the optimization of nonlinear
Figure 1:Schematic showing TxID object hierarchy (upperuser-specﬁled functions, and TxBase, a library of unary

right), the TXAC object hierarchy (bottom) and one examle”nCtorS and other _ge_neral utilities. _LION++ t{ikes full
of interface with the X/Motif graphical user interface (upperddvantage of sophisticated templating techniques and
left). object oriented design in order to provide users with

maximum flexibility in the choice of argument type and

4 ACCELERATOR ANALYSIS LIBRARY return type for the merit function that needs to be opti-
afpized and in the configuration of options for the built-in

The accelerator analysis library TXAN uses TxAC to ¢ L lqorithms
culate matched Twiss parameters (or the linear and 2 9 :

: i . ree multidimensional algorithms have been imple-
order dispersion) for any closed orbit or to propagate . ; . ! .
P mented, including nonlineaimplexand Powell, which
specified initial values element by element through

beamline. TxAN can also calculate the position and o dlo not need the gradient of the function, and one due to

. . ; .rffletcher, Reeves, Polak and RebigeRPR), which
entation of all beamline elements in a global Cartesia . ;
Eoes require access to the gradient. The Powell and

coordinate system, or use Monte Carlo methods . . . S
ropagate the RMS moments of a particle distribution PR algorithms require access to 1-D line optimization
P " algorithms. Three 1-D algorithms have been imple-

The classes of TxAN inherit from the data hOIdm%ented, includinggolden sectiorand Brent which do

classes of TxID and define a new data holding class for . L -
. . ' not need the function derivative, andrendified secant
storing the analysis results. Developers can define a new . . . o
. . ! - algorithm, which does require access to the derivative.

C++ class for accelerator simulation, inheriting appro; o .
At present, all of the optimization algorithms are uncon-

priately from the TxAN hierarchy. The data resultm%tramed although we are currently implementing algo-

from the new simulation is stored in the plot data CIasﬁthms that constrain the arguments in various ways. We

370

Proceedings of the 1999 Particle Accelerator Conference, New Y ork, 1999

are also now implementing the Levenberg-Marquardt akccelerator class library, allowing for direct model inter-
gorithm, which is effective for nonlinear least squaresomparisons.

fitting and, more generally, for simultaneous optimizaThere are two prices to be paid for this approach. The
tion of many nonlinear functions. LION++ is readilyfirst is that such heavy use of templates can lead to very
extensible so developers can implement their favoriteng compilation times. The second is that the use of
algorithms or create a thin interface to other C and CHitaits requires the use of rather awkward syntax in the
algorithms, all with the same convenient user interface.source code for the accelerator class library.

7 THE TRAITS MECHANISM 8 CONCLUSIONS

“Traits” are defined through a template class or struch “container free” approach to the development of C++
For example, Fig. 2 shows the definition of two traits foclass libraries for the modeling and design of accelera-
a 1-D array class: the type of the argument held by th&rs is an elegant and relatively straightforward way to
array and a public method Resize() that will change thmake the many existing class libraries interoperable.
length of the array. It is assumed that the 1-D array suphis approach places some burdens on the library devel-
ports the [] operator for accessing the elements. Theer, but it avoids the difficulty of trying to convince
TxArrayWrap class in Fig. 2 wraps a simple C-stylelevelopers that they should base their code on some
pointer, which does not have built-in resizing capability.standard class library design.

In LION++, the argument list for multidimensional func-The authors thank Julian Cummings for discussions re-
tions is declared to be of type VecType, and all optimgarding the use of traits and John Verboncoeur for
zation classes are templated over VecType. Users mdicussions regarding object-oriented programming.
instantiate a templated optimization object, where the

template parameter specifies the argument type of the 9 REFERENCES
function to be optimized. Thus, LION++ is “container-
free" as defined in Ref. [23]- [1] TxSTD page, URL httg/www.techxhome.com/freestuff/txstd

[2] TxID page, URL http//www.techxhome.com/freestuff/txid

sinuet TUnaryContainer Traits <std:vedor<AgType>> [3] TXAC page, URL http/www.techxhome.com/freestuff/txac
typedef AgType ValueType;

VecType'
structTxUnaryContainer Traits

static void Resize(std: vector<g¥ype>& vec, int dim) { [4] MAPA page, URL http//www.techxhome.com/products/mapa
vecresize(dim):} [5] LION++ page, URL http/www.techxhome.com/produdtisn

SrUCtTXUnaryConinerTraits <TxAT ayWrap<ArgTypes> [6] G. Booch, “Object Oriented DevelopmentZEE Transactions on

typedef AgType ValueTpe; Software EngineeringZ, 211 (1986)

S ey P ArgType=sar), intdim) [71 B. Stroustrup, The C++ Programming LanguageThird Ed.

777777 (Addison-Wesley, Reading, Massachusetts, 1998).

ﬂf structTxBinaryContaine Traits <std:vector<AgType>, RetJpe> [8] S. B. Lippman and J. LajoieC++ Primer, Third Ed. (Addison-
stebEnanConainerMials | Fypedef ypename TxBingNumberTraits<AgType, Re(hpe>:: Wesley, Reading, Massachusetts, 1998).

typedef std::ve ctor <Promotgipe > pmmmei’/r:cq?;p;mommﬁpe’ [9] E. Gamma, R. Helm et. aDesign Patterns(Addison-Wesley,

Reading, Massachusetts, 1995).
Figure 2: Unary (above) and binary (below) traits forl10] A. Elins, Principles of Object Oriented Software Development

containers (user-defined 1-D arrays)_ (Addison-Wesley, Reading, Massachusetts, 1994).
[11] A. D. Robison, "C++ Gets Faster for Scientific Computing”,

The method for tracking in an accelerator library (called Computers in Physick, 458 (1996).
Advance() in TXAC) could be templated over the type T. Veldhuizen, "Expression Template€++ Report7 (1995).

2]
. . J13] S. Haney, "Beating the Abstraction Penalty in C++ Using Expres-
the class that is to be tracked. Then the traits mechani n] sion Templates'Computers in Physick, 552 (1996).

could be used to allow this class to be any of: a) a singd@] The Matrix Template Library (MTL) home page at URL
particle of precision float, double, etc.; b) a 1-D array of http:/www.Isc.nd.edu/research/mtl/
particles, with the array type completely arbitrary; c) H5} LLJR'-“:itélﬁr’;(’e’lfgt‘;”?}J’gﬁéﬂ?&czﬁgﬂggﬁﬂ'rf*e'"brgi'isObjects o
g_enera“_zed user-defmed_ pamCle class; or d) any C Beam Physics,” AIP Conf. Pro255 (Corpus Christi, 1992).
differential algebra (DA) library. Thus, the traits mechan7; map-9 web site, URL http:/imwwslap.cern.ch/~fci/mad/mad9
nism immediately allows for some interchange of soff48] v. Cai, M. Donald, J. Irwin, Y. Yan, “Lego: A Modular Accel-
ware components between different C++ code develop- erator Designer Code,”SLAC-7642, August 1997. _
ers (particle classes and DA Iibraries). 19] D. L. Brth|Ie_r, J. R. Cary and S. G. Shasharina., Proc. Sixth
. .. European Particle Accelerator Conf., (Stockholm, June, 1998).
Takmg .thIS idea a step further, one could te_mplqte t%] CLASSIC web site, URL http://wwwslap.cern.ch/classic
controlling class of the accelerator dynamics librarpi] N. c. Meyers, “Traits: a New and Useful Template Technique,”
(called Accelerator in TXAC) over the element type. In C++ Report7 (1995); URL http//www.cantrip.org/traits.html
this case, the “traits” would include methods for readin@z] T. Veldhuizen, “Using C++ Trait Classes for Scientific Comput-
and writing the physical data associated with an elemei%r3 iG”g;';:UR.L hitp://monet.uwaterloo.ca/~tiiui/papers/traits.html
. . . Furnish, “Container-Free Numerical Algorithms in C++,
tracking a particle (or array, or DA vector) through al Computers in Physick2 (3) (May, 1998).
element, etc. With this approach, the developer of o] MAD-8 web site, URL http:/iwwwslap.cerm.ch/~fci/mad/mad8
class library could use the element classes from another

371

